Negative Evidences and Co-occurences in Image Retrieval: The Benefit of PCA and Whitening
نویسندگان
چکیده
The paper addresses large scale image retrieval with short vector representations. We study dimensionality reduction by Principal Component Analysis (PCA) and propose improvements to its different phases. We show and explicitly exploit relations between i) mean subtraction and the negative evidence, i.e., a visual word that is mutually missing in two descriptions being compared, and ii) the axis de-correlation and the co-occurrences phenomenon. Finally, we propose an effective way to alleviate the quantization artifacts through a joint dimensionality reduction of multiple vocabularies. The proposed techniques are simple, yet significantly and consistently improve over the state of the art on compact image representations. Complementary experiments in image classification show that the methods are generally applicable.
منابع مشابه
Negative evidences and co-occurrences in image retrieval: the benefit of PCA and whitening
The paper addresses large scale image retrieval with short vector representations. We study dimensionality reduction by Principal Component Analysis (PCA) and propose improvements to its different phases. We show and explicitly exploit relations between i) mean subtraction and the negative evidence, i.e., a visual word that is mutually missing in two descriptions being compared, and ii) the axi...
متن کاملImage retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملImage Retrieval Using Dynamic Weighting of Compressed High Level Features Framework with LER Matrix
In this article, a fabulous method for database retrieval is proposed. The multi-resolution modified wavelet transform for each of image is computed and the standard deviation and average are utilized as the textural features. Then, the proposed modified bit-based color histogram and edge detectors were utilized to define the high level features. A feedback-based dynamic weighting of shap...
متن کاملDocument Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملFine-tuning CNN Image Retrieval with No Human Annotation
Image descriptors based on activations of Convolutional Neural Networks (CNNs) have become dominant in image retrieval due to their discriminative power, compactness of the representation, and the efficiency of search. Training of CNNs, either from scratch or fine-tuning, requires a large amount of annotated data, where high quality of the annotation is often crucial. In this work, we propose t...
متن کامل